はじめに データの説明 分析の流れ 分析 1. どういう判別器を用いたら良いか。 2. 変数選択をする。 3. imblearnでオーバーサンプリングとアンダーサンプリングを行う。 4. インバランスを考慮しなかった場合と性能を比較する。 5. 分析結果 まとめ
はじめに imbalanced-learnとは 動機 やること 参考 機能の紹介 インストール 2.2.1 サンプルのでっち上げ(オーバーサンプリング) 普通のSMOTE ボーダーラインSMOTE SVM SMOTE ADASYN 3.2.2 クリーニングアンダーサンプリングテクニック(データの削除) 3.2.2…
引用をストックしました
引用するにはまずログインしてください
引用をストックできませんでした。再度お試しください
限定公開記事のため引用できません。